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Abstract

We have simulated the trapping and cooling of moderated positrons in a Pen-

ning trap in which the positrons lose energy through collisions with a simul-

taneously stored laser-cooled 9Be+ plasma. Once the positrons are trapped,

they cool through sympathetic cooling with the 9Be+ plasma. After the

positrons cool, their motion parallel to the magnetic field reaches a state of

thermal equilibrium with the 9Be+ ions and they rotate about the trap axis

at the same frequency as the 9Be+ ions. Therefore, a centrifugal separation

will occur, forcing the positrons to coalesce into a cold column along the trap

axis. A simulation which, in part, utilizes Monte–Carlo techniques, indicates

a capture efficiency of as high as 0.3% for 300 K moderated positrons passing

through a 9Be+ plasma with a density of 1010 atoms cm−3 and a column

length of 1 cm. This capture efficiency leads to the positron capture rate of

∼ 1000 positrons per second, assuming a 100 mCi positron source and 10−3

for the efficiency for moderating positrons from the source. The resulting

dense reservoirs of cold positrons may be useful for antihydrogen production

and for reaching a plasma state in which the mode dynamics must be treated

quantum mechanically.
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I. INTRODUCTION

With advances in the use of positron moderators to produce low energy positron beams
[1–12], and in the trapping of non-neutral plasmas [13,14], attention has been focused on
trapping and cooling positrons in electromagnetic traps [2–4,9–12,15–17]. Cold positron
reservoirs are useful for positron-normal matter interaction studies, such as the study of
resonances in low-energy positron annihilation on molecules [4]. With sufficiently high trap-
ping rates, cold positrons can be released from electromagnetic traps to produce cold beams
of high brightness for a number of different experiments [4,6,18]. A dense gas of positrons
at sufficiently low temperature also provides an example of a plasma with quantized normal
modes [15,16,19]. Finally, by passing cold antiprotons through a reservoir of cold positrons,
one could form antihydrogen through three-body recombination [20–22].

Several groups have successfully trapped positrons in electromagnetic traps. Schwinberg,
Van Dyck, and Dehmelt used resistive cooling of the positrons in a Penning trap to achieve
trapping of small numbers [23]. Gabrielse, Haarsma and Abdullah have combined this
method with a 3 mCi source and a positron moderator to trap ∼ 3× 104 positrons at a rate
exceeding 103 per hour [3]. More recently this group has been able to trap more than 106

positrons in 17 hours through a different method where apparently positronium in a high
Rydberg state created on the surface of the moderator is field-ionized in the trap [24,25].
Conti, Ghaffari and Steiger have also trapped positrons in a Penning trap by injecting slow
positrons into the trap while ramping the trap electrostatic potential [12,26]. Mills has
discussed accumulating positrons in a magnetic bottle to produce a slow positron beam [27].
Demonstration of positron trapping in a magnetic mirror by cyclotron-resonance heating has
been recently demonstrated [28]. The largest number of trapped positrons (∼ 3× 108) has
been reported by Surko and coworkers [4,18,29,30]. These experiments employed collisional
cooling of positrons with a room-temperature buffer gas of N2 to provide trapping and
cooling. By removing the buffer gas, the base pressure is reduced to 3×10−10 Torr, resulting
in a positron lifetime of about one hour. With a 90 mCi positron source a trapping rate of
3× 108 positrons in 8 minutes and a trapping efficiency of moderated positrons greater than
25% was achieved.

In this paper we explore the possibility of capturing and cooling positrons in a Penning
trap through collisions with a simultaneously stored laser–cooled plasma of 9Be+ ions. Slow
positrons become trapped through Coulomb collisions with the 9Be+ plasma. Once trapped,
the positrons will then be sympathetically cooled by the 9Be+ plasma, which can be laser
cooled to temperatures as low as 0.5 mK [31,32]. Sympathetic cooling refers to the cooling of
one species through Coulomb interactions or collisions with a second, directly cooled species
[32,33]. Since this technique employs high vacuum, positron annihilation will be suppressed,
permitting long trap lifetimes.

One of the simplest methods to study the transport of positrons in a 9Be+ plasma is the
Monte Carlo method. Unlike collisions between neutral atoms, Coulomb collision deflections
at large distances are important, with each of these “distant collisions” producing a small
scattering and velocity change. In Monte Carlo simulations one can treat the problem of
Coulomb collisions through the cumulative effect of a large number of small angle scattering;
we have used Monte Carlo simulations to calculate the scattering angle of the moderated
positron after each pass through the 9Be+ plasma. The simulations were based on the
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expression for the probability distribution for scattering of a positron into an angle θ after a
large number of collisions, assumed to occur as a positron passes through the 9Be+ plasma
[34,35]. Recently, Nanbu used a Monte Carlo method to derive a simple analytical expression
for the probability density function for a deflection angle after many Coulomb collisions [36].
We also have done a number of calculations using expressions from Ref. [36] to calculate
the scattering angles for positrons after passing through the plasma and obtained good
agreement between the two data sets.

The basic method for capturing and cooling positrons using a 9Be+ plasma, outlined
previously in Ref. [16], is discussed in Section II. In addition, we describe here some details
of a hypothetical experiment designed to trap positrons. In Section III we have increased the
scope of the discussion by including the effects on the capture efficiency caused by the energy
distribution of moderated positrons, the finite size of the positron source, the radial electric
field within the plasma, and 9Be+ recoil. The trap geometry, the plasma parameters, and
the positron behavior described in Sections II and III are used in the modeling of positron
trapping. The Monte Carlo method used to calculate the efficiency of the proposed method
[16] is described in Section IV. The results of the simulations and a discussion of the results
are presented in Section V.

II. BASIC METHOD

The model assumes the 9Be+ ions are first trapped in a cylindrical Penning trap contained
in a room-temperature vacuum enclosure with an axial magnetic field of 6 T. Figure 1
illustrates the simple Penning trap design considered in modeling the capture of positrons.
In this magnetic field, a laser-cooled 9Be+ plasma in thermal equilibrium can reach a uniform
density n0 of up to 1010 atoms-cm−3 [14,37]. This high density can be reached by using
torques due to a laser beam [37] or due to a rotating electric field perturbation [38,39] to
control the plasma’s angular momentum. A low-energy positron traversing this plasma along
the magnetic field direction will scatter off the 9Be+ ions via the Coulomb interaction. The
positron’s parallel momentum (along the magnetic field direction) can thus be converted to
perpendicular momentum. If sufficient momentum is converted, the positron’s momentum
along the magnetic field can be reduced so that it will not leave the trap. In Ref. [16], it was
assumed that if the positron was initially captured in this way, it would lose enough energy
through cyclotron radiation to be permanently trapped. However, this is true only for a
small fraction of positrons because typically, before the positron can lose enough energy
through cyclotron radiation, its energy can be redistributed back by Coulomb collisions
along the trap axis and it will escape [40]. In the work described here, we now include this
escape process and the cooling effects of 9Be+ recoil, which initially provides a more efficient
cooling mechanism than cyclotron radiation.

In the Penning trap, the plasma rotates around the magnetic field axis at a frequency ωr.
The technique of “Doppler” laser cooling [31,41,42] reduces the temperature of the plasma to

less than 10 mK. The Debye length of the plasma can be expressed as λD = (kBTε0/n0q
2)

1/2
,

where kB is Boltzmann’s constant, q is the ion’s charge and ε0 is the permittivity of free space.
At temperatures near 10 mK, the Debye length is small compared to plasma dimensions
[31]. In this limit, the density of 9Be+ ions can be expressed as a function of the 9Be+

cyclotron frequency Ω, the plasma rotation frequency ωr, and the 9Be+ mass MBe, as n0 =
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2ε0MBeωr (Ω− ωr) /q2 [14,19,31]. The maximum achievable density is the Brillouin density,
which occurs when ωr = Ω/2 and has been achieved in laser-cooled plasmas with up to a few
hundred thousand 9Be+ ions in magnetic fields up to 4.5 T [37,39]. For 9Be+ ions confined
in a 6 T magnetic field, this limit is n0 ' 1010cm −3. We will assume that the magnetic field
is uniform along the length of the trap.

As illustrated in Fig. 1 high-energy positrons from a 22Na source are injected from the
right into the trap, on the trap axis, through a cylindrical endcap. The positrons have a beta-
decay endpoint energy of 545 keV, and these high-energy positrons will not significantly affect
the ions in the plasma (a discussion of the interactions between hot positrons and plasma is
contained in the Appendix.) After passing through the plasma, the positrons strike a room
temperature crystal moderator. The positrons will thermalize by interacting with electrons
and phonons in the crystal. In this “reflection geometry”, a small fraction (up to 10−3) will
avoid annihilation in the crystal and emerge as a beam of slow positrons [1,5,43] which then
enter the trap [44]. At the surface of the crystal the moderated positrons have an energy
determined by the crystal temperature. In addition, they are accelerated in the direction
normal to the crystal surface by the work function Φ0 of the crystal [1]. For the method
of trapping positrons discussed here, the narrow distribution of thermal-energy positrons
at the surface of the crystal is important. Measurements show that positrons emitted from
a Cu(111) single-crystal moderator can have a narrow energy distribution whose width is
reasonably consistent with thermal broadening given by the temperature of the moderator
crystal [45]. In our calculations, for the purpose of the crystal work function, we assume the
use of a Cu(111) crystal moderator.

After the positrons are emitted from the moderator crystal their axial kinetic energy is
assumed to be further reduced by a conducting screen with good transmission (the retarding
grid of Fig.1), which has a potential a few tenths of a volt above the moderator potential.
If the moderator and retarding grid potentials are equal, the axial energy of positrons as
they pass through the grid is Φ0+Eth

z , where Eth
z is the axial component of the positron’s

thermal energy at the crystal surface. The positrons will then enter the 9Be+ plasma with
relatively little kinetic energy. At these low energies (' few eV), positron annihilation on
the 9Be+ ions is made negligible by Coulomb repulsion. By adjusting the potential of the
right-most cylindrical electrode, we can ensure that the moderated positrons are reflected
at the end of the plasma farthest from the moderator and pass through the plasma twice.
During each pass, some of the axial energy can be converted to perpendicular energy through
Coulomb collisions with the 9Be+ ions, thereby preventing them from escaping back through
the retarding grid. Positrons that remain trapped for many passes will lose enough energy
through 9Be+ recoil to remain permanently trapped. The positrons that are not trapped
are assumed to strike the moderator or grid and annihilate.

Once the positrons are trapped within the laser cooled 9Be+ plasma, they will be cooled
through a combination of sympathetic cooling through 9Be+-e+ Coulomb collisions and
cyclotron radiation. After the positrons are cooled by the 9Be+ plasma, both positrons and
9Be+ ions will undergo uniform rotation at the same frequency ωr and the positrons will be
forced to the center of the rotating plasma because of their smaller mass [33,46]. In the limit
of zero temperature, the edges of each plasma will be sharp, and the plasmas will separate,
with the positrons forming a column of uniform density along the trap axis. If the 9Be+

plasma density is significantly below the Brillouin limit, the densities for confined plasmas
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of e+ and 9Be+ are expected to be approximately equal and the plasma separation quite
small [15,46]. This implies good thermal coupling and possible positron axial temperatures
less than 10 mK. The discussion of strongly magnetized plasma equilibria by Glinsky, et
al. [47] indicates that the positron plasma axial and cyclotron degrees of freedom will be
strongly decoupled in a 6 T magnetic field. Therefore, cyclotron radiation may keep the
positron cyclotron temperature in near thermal equilibrium with the trap electrodes. Here
we assume the electrodes are maintained at room temperature, but the equilibrium cyclotron
temperature could be reduced, for example, by cooling the electrodes to 4 K with a liquid
helium bath or to lower temperature with a dilution refrigerator.

One way to experimentally detect the presence of trapped positrons could be by imaging
the near-resonant 313 nm fluorescence of the 9Be+ plasma and looking for the absence of
9Be+ ions in the center of the plasma [16]. Other ions with charge-to-mass ratios higher
than 9Be+, such as 4He+, H+

3 , and 9Be++, will also be trapped in the center of the plasma.
These ions will not fluoresce at 313 nm and will therefore mimic the positron signature on
the imaging tube. We anticipate that these ions could be distinguished from the positrons
through their resonant response to radiation applied at the cyclotron frequency. The size of
the “hole” in the 9Be+ plasma will yield an estimate of the number of trapped positrons.
With the imaging technique we estimate we can detect the presence of a single “string” of
a few tens of positrons trapped on the axis within the 9Be+ plasma [48].

III. POSITRON TRAPPING

Positrons within the Cu(111) moderator crystal rapidly thermalize to a Boltzmann veloc-
ity distribution [1]. Within the crystal, the positron velocity distribution P (vi) will conform
to

P (vi) ∝ e
−mev

2
i

2kBT , (1)

where the subscript i indicates the velocity direction (i = x̂, ŷ, ẑ), me is the positron mass,
and T is the temperature of the crystal moderator . Positrons emitted from the moderator
are accelerated in the direction perpendicular to the moderator surface by the crystal work
function Φ0. As indicated in Fig. 1, the positron velocity is primarily along the magnetic
field axis (ẑ) since the crystal surface is oriented perpendicular to that axis. Immediately
outside the crystal the slow positrons will have an axial kinetic energy distribution,

P (Ez) dEz ∝ e
−Ez − Φ0

kBT dEz, (2)

for Ez ≥ Φ0. This distribution combines the probability of effusion from the moderator
surface [7,49] with the acceleration at the surface due to the work function. Equivalently, we
can assume the positron axial velocity at the crystal surface is selected from the distribution

P (vz) ∝ vze
−mev

2
z

2kBT , (3)

and then accelerated by the potential Φ0. The grid potential can be adjusted so that the
positrons have small excess axial energy, δEz, with respect to the grid. Before reaching the
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plasma, the positrons will be accelerated by the plasma potential, Vp(r) = −n0qr
2/(4ε0).

(For simplicity we have assumed that we adjust the moderator and electrode potentials to
make the plasma potential along the trap axis Vp(r = 0) = 0.)

We have modeled the initial collisions of the moderated positrons with the 9Be+ ions in
the weakly magnetized approximation where the effects of the magnetic field on the collisions
are neglected. This approximation is valid as long as the positron’s cyclotron rotation is less
than one cycle during the time of a collision [47]. The number of cyclotron orbits during a
collision can be defined as κ = Ωcτ , where Ωc is the positron cyclotron frequency and τ is
the binary collision time. Therefore, we consider collisions where κ < 1 [47]. For example,
the minimum collision time is τ = b̄/v, where b̄ = q2/2πε0mev

2 is the collisional distance of
closest approach. For an energy of 0.1 eV, v ' 1.9× 107 cm s−1, making b̄ ' 1.4× 10−6 cm.
At 6 T, Ωc ' 1.1× 1012 s−1, yielding κ = 0.08.

We calculate the initial capture of positrons after one pass by using the distribution
for multiple small-angle Coulomb scattering [34,35]. (The cross section for multiple small-
angle Coulomb scattering is typically larger than the cross section for a single large-angle
scattering [50]). Below, we define a “pass” through the plasma as a pass back and forth
(or from left to right and back in Fig. 1) ending with the positron traveling towards the
moderator crystal. As seen in Fig. 1, the positron can only leak out of the trap the way it
entered.

The angular distribution for multiple small-angle Coulomb scattering can be simulated

by calculating an energy dependent rms scattering angle
√
〈θ2〉 according to the Rutherford

scattering formula such that [50]

〈θ2〉 =
n0lq

4

2πε20m2
ev

4
ln

(
bmax

bmin

)
. (4)

Here l represents twice the plasma length, and bmax and bmin are the maximum and minimum
impact parameters respectively. We use bmax = v/Ωc, where Ωc is the positron cyclotron
frequency and v is the magnitude of the positron velocity. The quantity bmax is the maximum
impact parameter for which we can use the weakly magnetized approximation. It is derived
by setting the parameter κ = 1. For the parameters used in the above discussion of κ, bmax
= 0.17 µm, which is more then an order of magnitude smaller than the mean ion spacing
in the 9Be+ plasma. We use bmin = b̄/2 to limit the scattering to small angles [50]. The
probability of multiple scattering in one pass through an angle θ can then be approximated
by a Gaussian distribution in solid angle [34,35,51],

PS(θ)dΩ ∝ sin(θ) exp

(
− θ2

〈θ2〉

)
dθdφ. (5)

This distribution is valid for multiple angle scatterings where each is less than 10◦ [35].
The capture of positrons within the 9Be+ plasma is divided into two processes. The first

process is based on Coulomb collisions and traps the positrons temporarily. After a single
pass a positron can be trapped if the amount of axial energy converted into perpendicular
or cyclotron energy is greater then the excess axial kinetic energy of the positron. Because
of the difference in the positron and 9Be+ masses, positrons will actually lose very little
energy by passing once through the plasma. If initially trapped, the positron will continue
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to make passes through the plasma until it either escapes the trap or becomes permanently
trapped. To escape the trap, a positron which is “initially captured” needs to convert its
perpendicular energy back to axial energy.

The second process permanently traps the positrons by depleting their excess energy
primarily through 9Be+ recoil cooling. A positron with energy E scattering off the ions in
the plasma through an angle θ will lose an energy

∆E = 4E
(
me

MBe

)
sin2(θ/2) (6)

to 9Be+ recoil. Because of the large mass difference between a 9Be+ ion and a positron, a
positron will have to make many transits through the plasma in order to loose its excess
energy. But once sufficient positrons are trapped, other positrons can lose axial energy
through e+–e+ collisions. The trapping efficiency under these collisions is expected to be
higher than for the e+–9Be+ collisions because of the larger energy loss due to positron
recoil. This enhanced recoil cooling is not taken into account here.

IV. SIMULATION

The Monte-Carlo simulation proceeds as follows. For each positron, an initial radial
coordinate is chosen according to a flat distribution over the active area of the source. The
initial velocities out of the moderator in the x and y directions are chosen using velocity
distribution functions P (vi) of Eq. (1). The z component of the positron velocity was
obtained using a modified Boltzmann distribution (Eq. (3)). Equivalently, the velocity vz
at the surface of the crystal is determined from the equation vz = vth (−ln (1 − Rn))1/2

where Rn is a random number between 0 and 1. Here vth =
√

2kT/m, where T is the

temperature of the crystal. We use Eth
z =mvz

2/2 to denote the axial kinetic energy. At the
moderator surface the positron is further accelerated in the axial direction by the surface
work function. We have used the Cu(111) work function Φ0 = 0.4 eV in the Monte Carlo
simulation.

Figure 1 illustrates the electrical potential experienced by the positrons as they travel
from the moderator, held at V0, through the grid at potential Vg, and into the 9Be+ plasma.
The moderated positrons with an axial energy above the retarding grid potential, δEz (=
q(V0−Vg) + Φ0 +Eth

z ), follow the magnetic field lines and accelerate into the plasma. Their
radial coordinate r with respect to the trap symmetry axis does not change until they
undergo a large number of collisions inside the plasma, since their cyclotron radius is less
than 10−4 cm. At low temperature, the electric potential inside the plasma is approximately
independent of the axial coordinate, and is given by Vp(r) = −n0qr

2/(4ε0).
Coulomb scattering caused by one pass through the plasma is described by two angles, θs,

the magnitude of the deflection angle, and φs, the orientation of the scattering around the de-
flection cone. The scattering angle θs was calculated assuming the distribution given by Eq.

(5). This assumption leads to an expression for the scattering angle θs =
√
〈θ2〉(−ln(Rθ)),

where 〈θ2〉 is the rms scattering angle given by Eq.(4). Since the positron has no preferred
azimuthal orientation, φs was obtained at the end of the pass from a uniform distribution
2πRφ. Here Rθ and Rφ are random numbers between 0 and 1. At the end of each pass, the
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new values of the vx, vy, vz were calculated from θs, φs, and the change of energy (Eq.(6)).
A test was then made to determine if the positron was permanently trapped. If this is not
the case, the positron will either make another pass or is lost. By repeating these “runs”,
we determine the percentage of moderated positrons trapped within the plasma. Typically,
the Monte Carlo runs had 1.5× 105 positrons.

V. RESULTS AND DISCUSSION

Results for the efficiency of trapping positrons in a 9Be+ plasma for particular conditions
are shown in Fig. 2. In this case the plasma radius was 0.1 mm, and the density was 1010

cm−3. We chose the moderator potential to be V0 = 3 V, while the grid potential Vg
was varied around V0 + Φ0 = 3.4 V. The percentage of temporarily trapped (triangles) and
permanently trapped (circles) positrons are plotted as a function of Vg. Also shown (squares)
is the fraction of positrons entering the trap vs the retarding grid potential. This curve is
the integral distribution of the axial component of kinetic energy, Ez. For the results of
Fig. 2, the temperature of the crystal was taken to be 300 K. The maximum efficiency
for positron trapping occurs at Vg = 3.4 V and was ∼ 0.4 % for permanent and 24 % for
temporary trapping only. The results of the trapping efficiencies for the crystal cooled to
100 K are shown in Fig. 3. The width of the energy distribution is reduced by a factor
of 3. Such thermal narrowing has been confirmed in experiments [7]. The efficiency for
permanent trapping increases to ∼ 2.5%. Figures 2 and 3 indicate, as mentioned previously,
that the energy spread of the moderated positrons is important for the trapping method
simulated here. Experimental studies have reported near-thermal energy spreads for metal,
single-crystal moderators [7,45]. In practice this condition may not be straight forward
to obtain. Figure 4 shows the trapping efficiency for an energy spread of the moderated
positrons corresponding to T = 2000 K. The factor of 7 increase in the positron energy
spread of Fig. 4 over Fig. 2 has resulted in a factor of 40 decrease in the efficiency for
permanently trapping positrons.

In Fig. 5 we show the fraction of captured positrons for different bias potentials V0 of the
moderator while holding the crystal temperature (300 K) and plasma parameters (density,
length and radius) constant. For each value of V0 in Fig. 5 the grid voltage was set to the
value Vg = V0 + 0.4 V which maximizes the trapping efficiency. The data show that the
efficiency for permanent trapping has a maximum of ∼ 0.45% when V0 is at about 4 V.
While we do not have a detailed understanding of the location of this maximum, we can
describe some effects which could produce it. Once temporarily trapped, a positron will

leave the plasma if it enters the loss cone θc about the z -axis defined by sin(θc) =
√

δET
ET

,
where ET is the total positron kinetic energy in the plasma and δET is the excess kinetic
energy the positron must loose to be trapped. A positron with a larger kinetic energy and
the same excess energy has a smaller loss cone, which tends to increase the efficiency of
trapping positrons with increasing energy. However, the energy loss per pass of a positron
decreases with energy. This increases the number of passes required to permanently trap
a positron (see discussions below), and will tend to decrease the trapping efficiency with
increasing energy.

Shown in Figs. 6 and 7 are the variations in efficiencies for trapping positrons as the 9Be+

plasma length and density were changed. The percentage of temporarily trapped positrons
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is increasing as a square root of both length and density. The probability for temporarily
trapping positrons depends on the final scattering angle θ, which in turn is proportional to√
ln. The percentage of permanently trapped positrons is increasing linearly with n and l,

possibly because the energy loss for permanent trapping (Eq. 6) varies as the square of the
rms scattering angle.

The efficiency for trapping positrons decreases with increasing plasma radius, as shown
in Fig. 8, for the same reason that it decreases with increasing moderator potential V0

for V0 > 4 V (see Fig. 5). At larger radii, the positrons will have correspondingly larger
energies entering the plasma. Throughout this manuscript we assume that the source radius
is equal to the plasma radius.

The number of round trips in the plasma before the positron either exits back through
the grid or is permanently trapped varies with the positron excess energy, values of V0

and Vg, and the plasma radius. The histogram in Fig. 9 shows the fraction of trapped
positrons vs the number of passes the positrons made through the 9Be+ plasma before being
permanently trapped. The results are shown for a plasma radius of 0.1 mm and for two
moderator potentials, V0 = 3 V (Vg = 3.4 V) (Fig. 9a) and V0 = 10V (Vg = 10.4 V) (Fig.
9b). Although the positrons have the same excess energy as they pass the grid in Figs. 9
a) and b), they spend different times in the trap before being captured because they enter
the plasma with different kinetic energies. Similar increases in the number of passes were
obtained when the plasma radius was increased to 0.5 mm. The plasma potential decreases
as -r2 and therefore positrons entering the plasma at larger radius have higher energies.

We can estimate the overall capture rate given the results of the simulation by including
an estimate of both the source and the moderator efficiencies. A 100 mCi source will
isotropically produce positrons at a rate of 3×109 s−1. Only a fraction of the emitted
positrons will reach the moderator crystal. We expect the positron flux at the Cu crystal to
be ∼ 4× 108s−1 [24]. Assuming a moderator efficiency of 10−3 and the trapping efficiency
of 0.3%, we get a trapping rate of about 1300 positrons per second.

Using the method outlined in this paper, it should be possible to achieve a low-
temperature, high-density positron plasma. In a magnetized, uncorrelated plasma, the an-
tihydrogen recombination rate should scale as n2T−9/2 [20]. In a correlated plasma (plasma
exhibiting liquid-like and solid-like behavior), this dependence will likely be modified. Fur-
thermore, a pressure of 1.3×10−8 Pa (10−10 torr) may provide positron lifetimes longer than
5 days (see Appendix). Since the Brillouin limit to the plasma density increases as the
square of the magnetic field, it is possible to increase these trapping efficiencies further by
going to larger magnetic fields.

We note that other electrode geometries can replace the transparent retarding grid. Any
geometry which provides a potential hill between the moderator and the 9Be+ plasma can
mimic the effects of the retarding grid. In an experiment, a geometry other than a grid
is desirable because azimuthal asymmetries in the retarding grid potential near the plasma
might limit the ultimate 9Be+ plasma density [14,37].

In this manuscript we assume that the 9Be+ ions recoil from positron impact as if they
were free particles. In fact, laser-cooled ion plasmas are often strongly coupled and exhibit
liquid or solid-like behavior where an ion is bound in a local potential well. However, because
the collision time of the weakly magnetized collisions considered here is fast compared to
the period of any of the ion’s plasma-mode frequencies, in considering their recoil we may
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treat the 9Be+ ions as if they were free particles.
In addition to the importance of achieving a relatively low-temperature thermal energy

spread of the moderated positrons, perhaps the largest uncertainty in an experiment designed
along these lines is the ability to produce high-density, laser-cooled 9Be+ plasmas of sufficient
length. While large-number plasmas ('109 ions [52]) and high-density plasmas (n' 1010

cm−3 [37]) have been achieved in Penning traps, the combination of these two parameters
has not yet been experimentally realized. In recent experiments we have been able to reach
the Brillouin limit with ∼ 106 ions in a 4.5 T and 6 T magnetic field [39,53]. It may also
be possible to “stack” a series of shorter plasmas in separate traps along the magnetic field,
thereby maintaining high density and increasing the effective column length. However, even
with a modestly sized single plasma, it should be possible to trap a sufficient number of
positrons to evaluate the effectiveness of this technique.
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APPENDIX

It is important to discuss interactions between the energetic positrons from the 22Na
source and the cold 9Be+/e+ plasma. Here, we examine 9Be+ loss due to positron impact
ionization, plasma heating caused by the positron beam, and the loss of trapped positrons
due to interactions with background gas. For simplicity we assume a 200 keV monoenergetic
positron beam (the peak energy of the 22Na beta-decay distribution) from an isotropic 2 mCi
source and a 9Be+ plasma of 1 cm length, with a 1 mm diameter and a density of 1010 ions-
cm−3 (∼8×107 ions).

The probability of an individual scattering event between a positron and a 9Be+ ion can
be expressed as P = n0σl

′, where n0 is the ion number density, σ is the event cross section,
and l′ is the effective path length through the plasma. Since positrons are emitted from
the source isotropically, many will have initial velocities perpendicular to the magnetic field
direction. These positrons will spiral along the magnetic field lines. Spiraling through the
plasma will increase the path length of these particular ions through the plasma. We can
eliminate the positrons with the largest effective path lengths by electrically retarding the
positron beam from the 22Na source. By placing a potential hill of 1400 V between the
source and the plasma, we can prohibit the positrons with the longest path lengths from
making it to the plasma. Eliminating only ∼ 9% of the positrons in this manner, we reduce
the average path length through the plasma to 2.4 l. The calculations below for 9Be+ heating
and loss assume this effective path length.

1. 9Be+ Loss

The energetic positrons from the 22Na source can doubly ionize the 9Be+ plasma through
electron impact ionization. 9Be++ will remain trapped but can be only sympathetically
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cooled; its presence can decrease the cooling capacity of the ion plasma by reducing the
number of laser cooled ions. The cross section for second ionization of Be+ through 200 keV
electron impact is approximately [54]

σ(Be+ + e− −→ Be++ + 2e−) ' 3.1× 10−17cm2. (A1)

We assume the electron-impact and positron-impact ionization cross sections are approxi-
mately equal for positrons of this high energy [55]. Using this cross section, and a total flux
of positrons Re+ of 1.3× 107 s−1, the number density of 9Be+ ions n0 and the average path
length through the plasma 2.4 l, we can estimate the loss rate of 9Be+ ions as

RBe++ = 2.4 ln0σRe+ ≈ 11 s−1. (A2)

At this rate, 7% of the initial 8× 107 9Be+ ions would be lost in about 6 days.
Another mode of 9Be+ loss is through high-energy positron annihilation on the 9Be+

ions. The cross section for positrons with 200 keV of kinetic energy to annihilate on 9Be+

is approximately 3×10−25 cm2 [56]. Thus loss of 9Be+ through this mechanism caused by
positrons from the 22Na source is negligible.

2. 9Be+ Plasma Heating

High-energy positrons passing through a cold dense 9Be+ plasma can heat the plasma
via Coulomb collisions. Since our plasma is simultaneously laser cooled, it is necessary
that the rate of laser cooling be larger than that of the positron heating. To estimate
the heating rate, we perform a calculation of non-relativistic scattering. Since the heating
from positron-positron collisions dominates over collisions between positron and 9Be+, we
estimate the heating rate due to trapped positron recoil. A high energy positron scattering
through an angle θ will impart an energy E(θ) = (1/2)mev

2 sin2(θ) to the trapped positron.
We can estimate the rate of plasma heating ĖH by integrating,

ĖH = 2πnNv
∫ π/2

θM

E(θ)
dσ

dθ
sin θdθ, (A3)

where n is the density of positrons in the beam, v is their velocity, N is the number of
positrons in the plasma, and θM is the minimum scattering angle for which the weakly
magnetized approximation is valid [47]. This corresponds to an impact parameter approx-
imately equal to the positron beam radius. In this limit, we estimate a heating rate of
ĖH ' 4.1 × 10−8 eV/s for each positron in the plasma. If we assume a positron column
plasma 1 mm in diameter and 1 cm in length containing 8×107 positrons, the plasma heating
rate will be 3.3 eV/s.

Since the heating rate scales as E
−1/2
i , where Ei is the energy of incident positrons,

the heating from moderated positrons incident on the plasma is significantly higher than
that from the unmoderated ones. Taking into account the moderator efficiency, the overall
heating from these positrons is comparable to that of the unmoderated ones.

It is necessary to compare this heating rate to ĖL, the rate at which energy is removed
from the plasma through laser cooling. We assume a 313 nm laser beam directed perpen-
dicularly to the magnetic field with a 25 µm waist perpendicular to the magnetic axis and
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250 µm along the axis, centered on the ion plasma. The laser intensity is adjusted to give
a resonant scatter rate of 10 MHz for an ion at the center of the beam. We assume a 9Be+

cloud of 1 cm in length and 1 mm in diameter rotating at ωr = 2π(5 MHz). Laser cooling
is most efficient using a laser beam propagating along the trap z-axis because the Doppler
shift associated with the plasma rotation is absent. Experimentally, this would be difficult
to realize in the apparatus described here because the positron source and moderator also
lie on the z-axis. We estimate the laser cooling rate using Eq. (17) of Ref. 28. We find that
for a laser detuning of 20 MHz, and a 9Be+ plasma temperature of 1 K, ĖL ' −1000eV/s.
Since |ĖL| � |ĖH |, the plasma heating from positron impact should not significantly affect
the plasma equilibrium.

3. Positron Loss

We can estimate the rate at which trapped positrons are lost due to background collisions
by scaling the results of Murphy and Surko [29]. In their experiment positrons were trapped
and cooled through collisions with a room-temperature background gas of nitrogen [29]. The
trap lifetime was limited to 40 s because of annihilation and positronium formation on the
1.3×10−4 Pa (10−6 torr) N2 background. Background gas pressures in room-temperature
Penning traps approach 1.3×10−8 Pa (10−10 torr). If we assume that the cross sections
for annihilation on other background gases are similar to that of N2 [57], our trap lifetime
should approach 5 days, long enough to accumulate a significant number of positrons.

We have also estimated the number of positrons ejected from the trap due to large-
angle scattering by positrons from the positron source and the moderator. The Rutherford-
scattering cross section for these collisions is quite small and the trap loss rate is lower than
that of background collisions.
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FIG. 1. Schematic diagram of a cylindrical Penning trap and of axial potentials. V0 - moderator

potential; Vg - grid voltage; δEz - positron axial kinetic energy above the grid voltage; Vr, Vc and

VEC - potentials on other trap electrodes.
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FIG. 2. Fraction of moderated positrons entering the trap (integral EDF) along with the frac-

tion of temporarily and permanently captured positrons as a function of the retarding grid voltage

for V0 = 3 V. The crystal work function was 0.4 eV and the temperature was 300 K. The 9Be+

plasma parameters were: density n0 = 1010 cm−3, length l = 1 cm and radius r0 = 0.1 mm. Squares

- integral energy distribution of positrons; circles - permanently trapped; triangles - temporarily

trapped.
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FIG. 3. Same as in Fig. 2 but for a moderator temperature of 100 K.
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FIG. 4. Same as in Fig. 2 but for a moderator temperature of 2000 K.
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FIG. 5. Capture percentage of permanently trapped (circles) and temporarily trapped (trian-

gles) positrons as a function of V0. The moderator work function was 0.4 eV and grid potential

was always VG= V0 + 0.4. (n0=1010 cm−3, l = 1 cm and r0 = 0.1 mm).
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FIG. 6. Capture percentage of permanently trapped (circles) and temporarily trapped (trian-

gles) positrons as a function of 9Be+ plasma length (n0=1010 cm−3, r0=0.1 mm, V0 = 4 V, Vg=4.4

V).
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FIG. 7. Capture percentage of permanently trapped (circles) and temporarily trapped (trian-

gles) positrons as a function of 9Be+ plasma density (r0=0.1 mm, l = 1 cm, V0 = 4 V, Vg=4.4

V).
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FIG. 8. Capture percentage of permanently trapped (circles) and temporarily trapped (trian-

gles) positrons as a function of the radius of the 9Be+ plasma (n0=1010 cm−3, l = 1 cm, V0=4 V,

Vg=4.4 V). We assume the positron source radius equals the plasma radius.
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FIG. 9. Histogram showing the fraction of permanently trapped positrons vs the number of

passes the positrons made through the 9Be+ plasma before being trapped, for n0=1010 cm−3, l = 1

cm, r0=0.1 mm and T = 300 K. (a) V0=4 V, VG=4.4 V; (b) V0=10 V, VG=10.4 V.
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